Skip to main content

Magnets

Basics of a magnet
There are two poles of a magnet:
1. North Pole
2. South Pole
The North Pole:
The North Pole is that part of the magnet that is pointing at the Northern Cardinal of the earth. It is the part of the magnet, that is negative.
The Southern Pole:
The part of the magnet that is pointing at the Southern cardinal point of the earth is called the Southern Pole. It is the part of the magnet that is positive.

Attraction and repulsion of a magnet
Just as like charges repels and unlike charges attracts, so as it is in magnets. 
The like poles of a magnet, repels each other; while the unlike poles of a magnet,  attracts each other.
Take for example; the Northern pole of a magnet will attract the southern pole of another magnet, this is because they have different magnetic polarity.
Also, the Northern pole of Magnet A will repel the Northern pole of Magnet B, this is because both two magnets have the same magnetic polarity.

Comments

Popular posts from this blog

Schrodinger equation as a law in physics

The unified theory of wave-particle duality has been used to derive the Schrödinger equations. The Schrodinger equations are generally accepted, by postulate rather than derivation, to be laws of physics. The Schrodinger equations provide a basis for analyzing many kinds of systems (molecular, atomic, and nuclear) in a particular inertial reference frame. The success of the Schrödinger equations constitutes a basis for accepting them, their derivations, and the unified theory of wave-particle duality which makes such derivations possible. This acceptance is completely justified in the favored inertial reference frame. In accord with the principle of relativity, all physical laws must be the same in all inertial reference frames, i.e., all physical laws must be Lorentz invariant. Recall, the relationship: $$\nabla^{2} \psi = \frac{\partial^{2} \psi}{\partial t^{2}}$$ ...........(1) Equ (1) is Lorentz invariant and reduces, by means of the procedure presented in the previou...

Maxwell first equation

The Maxwell first equation in electrostatics is called the Gauss law in electrostatics. Statement:  It states that the total electric flux \(\psi_E\) passing through a closed hypothetical surface is equal to \(\frac{1}{\epsilon_0}\) enclosed by the surface. Integral Form: $$\phi_E = \int E.ds = \frac{q}{\epsilon_0}$$ $$\int D.ds = q$$ where, $$D = \epsilon_0 E = displacement-vector$$ Let the change be distributed over a volume v and \(\rho\) be the volume charge density. Hence, $$q = \int \rho dv$$ Therefore; $$\int D.ds = \int_{v} \rho dv$$ .........(1) Equ(1) is the integral form of Maxwell first law Differential form: Apply Gauss divergence theorem to the L.H.S of equ(1) from surface integral to volume integral. $$\int D.ds = \int (\nabla.D)dv$$ Substituting this equation to equ(1) $$\int(\nabla.D)dv = \int_{v} \rho dv$$ As two volume integrals are equal only if their integrands are equal. Thus; $$\nabla.D = \rho v$$ ............(2) Equ(2) is the dif...

Maxwell third equation

Also called the Faraday law of "electromagnetic induction". The Maxwell third equation has two statements. Statement I:  It states that whenever a magnetic flux link with a circuit changes, then induced electromotive force (emf)  is set up in the circuit. Statement II: The magnitude of induced emf is equal to the rate of magnetic flux linked with the circuit. Integral form: Therefore; $$Induced-emf = - \frac {d\psi_m}{dt}$$ where, $$\psi_m = \int B.ds$$   ......(5) The negative sign is because of Lentz law,  which states that the induced emf set up a current in such a direction that the magnetic effect produced by it opposes the cause producing it. Also, the definition of emf states that the emf is the closed line integral of the non conservative electric field generated by the battery. That is: $$emf = \int E.dL$$ ........(6) Comparing equ(5) and equ(6) we have: $$\int E.dL = -\int_{s} \frac{dB.ds}{dt}$$ ...(7) Differential form Applying Sto...