Skip to main content

Maxwell third equation

Also called the Faraday law of "electromagnetic induction". The Maxwell third equation has two statements.

Statement I: 
It states that whenever a magnetic flux link with a circuit changes, then induced electromotive force (emf)  is set up in the circuit.
Statement II:
The magnitude of induced emf is equal to the rate of magnetic flux linked with the circuit.

Integral form:
Therefore;
$$Induced-emf = - \frac {d\psi_m}{dt}$$
where,
$$\psi_m = \int B.ds$$   ......(5)
The negative sign is because of Lentz law,  which states that the induced emf set up a current in such a direction that the magnetic effect produced by it opposes the cause producing it.
Also, the definition of emf states that the emf is the closed line integral of the non conservative electric field generated by the battery.
That is:
$$emf = \int E.dL$$ ........(6)
Comparing equ(5) and equ(6) we have:
$$\int E.dL = -\int_{s} \frac{dB.ds}{dt}$$ ...(7)

Differential form
Applying Stokes theorem to the LHS of equ(7) to change line integral to surface integral.
That is,
$$\int E.dL = \int (\nabla X E).ds$$ ........(*)
Substituting equ(*) into equ(7):
$$\int_{s} (\nabla X E) ds = -\int_{s} \frac {d}{dt} (B.ds)$$
Since, two surface integrals are equal only when their integrands are equal.
Thus,
$$\nabla X E = - \frac{dB}{dt}$$ ..........(8)
Equ(8) is the differential form of the Maxwell equation.

Comments

Popular posts from this blog

Schrodinger equation as a law in physics

The unified theory of wave-particle duality has been used to derive the Schrödinger equations. The Schrodinger equations are generally accepted, by postulate rather than derivation, to be laws of physics. The Schrodinger equations provide a basis for analyzing many kinds of systems (molecular, atomic, and nuclear) in a particular inertial reference frame. The success of the Schrödinger equations constitutes a basis for accepting them, their derivations, and the unified theory of wave-particle duality which makes such derivations possible. This acceptance is completely justified in the favored inertial reference frame. In accord with the principle of relativity, all physical laws must be the same in all inertial reference frames, i.e., all physical laws must be Lorentz invariant. Recall, the relationship: $$\nabla^{2} \psi = \frac{\partial^{2} \psi}{\partial t^{2}}$$ ...........(1) Equ (1) is Lorentz invariant and reduces, by means of the procedure presented in the previou...

Schrodinger equation

The Schrodinger equation in quantum mechanics, is a mathematical equation that describes the change over time of a physical system in which quantum effects,  such as wave-particle duality, are significant. The equation is a mathematical formulation for studying quantum mechanical systems. It is used to find the allowed energy levels of the quantum mechanical system (atoms, or transistors). The associated wave function gives the probability of finding the particle at a certain position. The Schrodinger equation exist in different forms: I.  Energy form of Schrodinger equation: $$\frac{E^{2}}{2m} = E - V(r)$$ II. The time independent Schrodinger equation: $$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) + V(r) \psi(r) = E \psi(r)$$ III.  Time dependent Schrodinger equation: $$-\frac{\hbar^{2}}{2m} \nabla^{2} \Psi(r,t) + V(r) \Psi(r,t) = i\hbar \frac{d\Psi(r,t)}{dt}$$ IV.  Auxiliary time dependent Schrodinger equation: $$-\frac{\hbar^{2}}{2m} \nabla^{2} \Psi(r,t) + ...

Cyanide: All about cyanide

What is cyanide? Cyanide is a chemical compound that consist of carbon (C) and nitrogen (N). It exist in different forms, so we can say; sodium cyanide, hydrogen cyanide, potassium cyanide and others. Most of these variants (forms of cyanide) are poisonous, that in can cause death within minutes. The origin of cyanide, started from the fact that a huge number of Nazi uses the potassium cyanide suicide pills to kill themselves during the World War II. The most dangerous form of cyanide is the hydrogen cyanide, which is in the form of gas; and is deadly when inhaled. Uses of cyanide  Despite the horrible fact of cyanide as  a poison, cyanide has its own importance as it is useful.  The uses of cyanide include: I. It is used in industrial chemistry, in the production of nylon. II. It is used for pest control, bring the key ingredient in the poison used to kill animals, such as rats and other rodents. III. It is used in the mining of golds and silver, to be able to ...