Skip to main content

Panfish

A panfish is a kind of fish (usually pursued by recreational anglers) that do not out grow the size of a frying pan. It is a term used by recreational anglers for small fish which could fit into a pan, but it is edible and legal for eating.

Example of a pan fish.


Species of the panfish 

  • Bluegill (Lepomis machrochirus) 
  • Green sunfish (Lepomis cyanellus) 
  • Redear sunfish (Lepomis microlophus) 
  • Redbreast sunfish (Lepomis auritus) 
  • Spotted sunfish (Lepomis punctatus) 
  • Pumpkinseed (Lepomis gibbosus) 
  • Warmouth (Chaenobryttus gulosus) 


The size of a pan fish 
However, it is stated above that the size of the panfish is a fish that takes the size of a frying pan. But a typical size of the bluegill exist which is about 4 to 12 inches and has  a maximum size of 16 inches. The largest bluegill ever existed was caught in the year 1950, with an average size of about 4 pounds (12 ounces).

Comments

Popular posts from this blog

Schrodinger equation as a law in physics

The unified theory of wave-particle duality has been used to derive the Schrödinger equations. The Schrodinger equations are generally accepted, by postulate rather than derivation, to be laws of physics. The Schrodinger equations provide a basis for analyzing many kinds of systems (molecular, atomic, and nuclear) in a particular inertial reference frame. The success of the Schrödinger equations constitutes a basis for accepting them, their derivations, and the unified theory of wave-particle duality which makes such derivations possible. This acceptance is completely justified in the favored inertial reference frame. In accord with the principle of relativity, all physical laws must be the same in all inertial reference frames, i.e., all physical laws must be Lorentz invariant. Recall, the relationship: $$\nabla^{2} \psi = \frac{\partial^{2} \psi}{\partial t^{2}}$$ ...........(1) Equ (1) is Lorentz invariant and reduces, by means of the procedure presented in the previou...

Maxwell first equation

The Maxwell first equation in electrostatics is called the Gauss law in electrostatics. Statement:  It states that the total electric flux \(\psi_E\) passing through a closed hypothetical surface is equal to \(\frac{1}{\epsilon_0}\) enclosed by the surface. Integral Form: $$\phi_E = \int E.ds = \frac{q}{\epsilon_0}$$ $$\int D.ds = q$$ where, $$D = \epsilon_0 E = displacement-vector$$ Let the change be distributed over a volume v and \(\rho\) be the volume charge density. Hence, $$q = \int \rho dv$$ Therefore; $$\int D.ds = \int_{v} \rho dv$$ .........(1) Equ(1) is the integral form of Maxwell first law Differential form: Apply Gauss divergence theorem to the L.H.S of equ(1) from surface integral to volume integral. $$\int D.ds = \int (\nabla.D)dv$$ Substituting this equation to equ(1) $$\int(\nabla.D)dv = \int_{v} \rho dv$$ As two volume integrals are equal only if their integrands are equal. Thus; $$\nabla.D = \rho v$$ ............(2) Equ(2) is the dif...

Maxwell third equation

Also called the Faraday law of "electromagnetic induction". The Maxwell third equation has two statements. Statement I:  It states that whenever a magnetic flux link with a circuit changes, then induced electromotive force (emf)  is set up in the circuit. Statement II: The magnitude of induced emf is equal to the rate of magnetic flux linked with the circuit. Integral form: Therefore; $$Induced-emf = - \frac {d\psi_m}{dt}$$ where, $$\psi_m = \int B.ds$$   ......(5) The negative sign is because of Lentz law,  which states that the induced emf set up a current in such a direction that the magnetic effect produced by it opposes the cause producing it. Also, the definition of emf states that the emf is the closed line integral of the non conservative electric field generated by the battery. That is: $$emf = \int E.dL$$ ........(6) Comparing equ(5) and equ(6) we have: $$\int E.dL = -\int_{s} \frac{dB.ds}{dt}$$ ...(7) Differential form Applying Sto...