Recall the relationship:
$$k = \frac{E}{\hbar}$$ ........(1)
And also the relationship:
$$(\nabla^{2} + k^{2}) \psi (r)=0$$ ........(2)
Substitute equ (1) into equ (2)
$$(\nabla^{2} + \frac{E^{2}}{\hbar^{2}}) \psi (r) = 0$$
Opening the brackets:
$$\nabla^{2} \psi(r) + \frac{E^{2}}{\hbar^{2}} \psi(r) =0$$
Therefore:
$$\nabla^{2} \psi(r) = -(\frac{E}{\hbar})^{2} \psi(r)$$ ............(3)
Multiply both sides of equ (3) by \(-\frac{\hbar^{2}}{2m}\), we have:
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) = \frac{\hbar^{2}}{2m} (\frac{E^{2}}{\hbar^{2}}) \psi(r)$$
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) = (\frac{E^{2}}{2m}) \psi(r)$$ ..........(4)
Recall, the relationship from the energy form of the Schrodinger equation, we have:
$$\frac{E^{2}}{2m} = E - V(r)$$ .............(5)
Substitute equ (5) into equ (4):
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) = (E - V(r)) \psi(r)$$
Opening bracket, we have:
$$-\frac{\hbar^{2}}{2m} \nabla^2 \psi (r) = E \psi (r) - V(r) \psi (r)$$
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) + V(r) \psi(r) = E \psi(r)$$ ..............(6)
Equ (6) is the time independent Schrodinger equation.
$$k = \frac{E}{\hbar}$$ ........(1)
And also the relationship:
$$(\nabla^{2} + k^{2}) \psi (r)=0$$ ........(2)
Substitute equ (1) into equ (2)
$$(\nabla^{2} + \frac{E^{2}}{\hbar^{2}}) \psi (r) = 0$$
Opening the brackets:
$$\nabla^{2} \psi(r) + \frac{E^{2}}{\hbar^{2}} \psi(r) =0$$
Therefore:
$$\nabla^{2} \psi(r) = -(\frac{E}{\hbar})^{2} \psi(r)$$ ............(3)
Multiply both sides of equ (3) by \(-\frac{\hbar^{2}}{2m}\), we have:
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) = \frac{\hbar^{2}}{2m} (\frac{E^{2}}{\hbar^{2}}) \psi(r)$$
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) = (\frac{E^{2}}{2m}) \psi(r)$$ ..........(4)
Recall, the relationship from the energy form of the Schrodinger equation, we have:
$$\frac{E^{2}}{2m} = E - V(r)$$ .............(5)
Substitute equ (5) into equ (4):
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) = (E - V(r)) \psi(r)$$
Opening bracket, we have:
$$-\frac{\hbar^{2}}{2m} \nabla^2 \psi (r) = E \psi (r) - V(r) \psi (r)$$
$$-\frac{\hbar^{2}}{2m} \nabla^{2} \psi(r) + V(r) \psi(r) = E \psi(r)$$ ..............(6)
Equ (6) is the time independent Schrodinger equation.
Comments
Post a Comment